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Abstract—Deep convolutional neural networks (DCNNs) have
emerged as powerful tools in diverse remote sensing domains,
but their optimization remains challenging due to their complex
nature and the large number of parameters involved. Researchers
have been exploring more sophisticated methodologies to improve
image classification accuracy. In this paper, we introduce a multi-
granularity feature encoding ensemble network (MGFEEN) that
is designed to fine-tune features at different levels of granularity.
The network is trained in a two-step process: first, the output of
granularity level i is used as the input for the next level; then,
a fully connected layer is added to the pre-trained network to
advance to the next level.

The effectiveness of the MGFEEN’s feature extraction is
evaluated by feeding the globally extracted features to a soft-
max classifier for classification. By applying ensemble learning
principles, our proposed MGFEEN achieves more accurate final
predictions. We evaluate our model on three widely recognized
benchmark datasets: UC-Merced, SIRIWHU, and EAC-Dataset.
Notably, on the EAC-Dataset, our results show a significant
0.54% improvement in accuracy over a single-training-network
setup, resulting in an impressive 98.70% accuracy level.

Index Terms—Multi-Granularity feature representation, con-
volution neural network, feature ensemble network, remote
sensing image classification.

I. Introduction

The authentic supervision of remotely captured imagery and

its subsequent analysis holds immense importance within the

realm of environmental and natural resources management.

This significance is evident in applications such as monitoring

agricultural regions through the analysis of Sentinel-2 image

time series [1], planning for water resource development[2],

tracking land changes [3], and detecting alterations in high-

resolution imagery[4]. The classification of Land Cover and

Musabe Jean Bosco, Jean Pierre Rutarindwa, and Kwizera Jean Pierre are
with Kigali Independent University (ULK), School of Science and Technology,
Department of Computer Science and Technology,2280 KIGALI, deanfstki-
gali@ulk.ac.rw, hodcskigali@ulk.ac.rw, and kwijpeter01@gmail.com

Mohammed Saleh Ali Muthanna M.Muthanna is with the Institute of Com-
puter Technologies and Information Security, Southern Federal University,
347922 Taganrog, Russia (e-mail: muthanna@sfedu.ru)

Ammar Muthanna is with the Peoples’ Friendship University of Russia
(RUDN University) 6 Miklukho-Maklaya, 117198 Moscow, Russia; (email:
muthanna.asa@spbgut.ru)

Ahmed A. Abd El-Latif is with the EIAS Data Science Lab, College
of Computer and Information Sciences, and with Center of Excellence
in Quantum and Intelligent Computing, Prince Sultan University, Riyadh
11586, Saudi Arabia, and with the Department of Mathematics and Computer
Science, Faculty of Science, Menoufia University, 32511, Egypt (email:
a.rahiem@gmail.com; aabdellatif@psu.edu.sa)

Corresponding Author: Ahmed A. Abd El-Latif

Land Use (LCLU) poses a present-day challenge in the field of

remote sensing, aiming to regulate the responsible utilization

of Earth’s land. While land cover and land use are distinct

concepts, there is a growing tendency to use them interchange-

ably in the context of remote sensing satellite data. Remote

sensing technology has a multitude of pivotal applications,

including semantic segmentation[5], scene classification in

Remote Sensing (RS) [6], change detection using Remote

Sensing (RS) techniques[7], and object detection in Remote

Sensing (RS) scenarios[8]. Among the emerging applications

mentioned above, one of the prominent areas of interest is

RS scene classification. This involves categorizing remote-

sensing scene images into distinct dissimilarity and similarity

classes. Recent research has shown a concentrated focus on

various computer vision tasks utilizing deep convolutional

neural networks (DCNNs)[9], [10], [11], [12]. There are

some image classification tasks such as classification[13],

object detection[14], change detection[15]and medical image

classification [16], [17], and automatic ship detection[18].

Recognize that the image classification process consists of

the following steps: (a) image preprocessing, (b) feature ex-

traction, and (c) classifier selection and designing. Practically,

feature extraction plays an essential important role in the

whole process. The image features mostly contain image color

features, image color space, texture, shape features, texture

features, and spatial relational ship features.

Cultural features and color attributes constitute overarching

characteristics that portray the landscape of the scene, pertain-

ing to the precise location within the image. However, they do

not fully capture the essential attributes of the objects present.

The shape attribute predominantly delineates the outline of

the image. Spatial relationship traits entail spatial positioning,

while relative relationship traits pertain to distinct elements

within the image. DCNNs have demonstrated their optimal

efficacy through the extraction of multiple features within a

hierarchical, finely-grained representation[19], [20], [21], [22],

[23]. At its core, DCNNs transform images into probabilities

for global feature categorization.

Over the last decade, computer vision has significantly

harnessed the capabilities of convolutional neural networks

(CNNs) [24]to solve challenges and learn hierarchical feature

representation to classifier fine and coarse for a massive

dataset, depending on handcrafted features. For systems to be

manageable, resilient, low-cost, and harmonious, researchers

have been looking into multi-granularity feature extraction, a
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high multilevel feature that involves making use of tolerance

for imprecision, incomplete, uncertain, and massive informa-

tion. Multiple granular layers for brain big data processing [25]

introduced multi-granularity information knowledge represen-

tation and [26] learning decision-making and problem-solving.

High semantic level features [27] can roughly localize, detect,

and classify the objects [28]. Very Fine Spatial Remote Sens-

ing [29], land cover challenges played a contribution for deep

learning [30].As an example, the analysis of satellite images

presents distinct challenges that give rise to complex and novel

scientific inquiries. Certain remote sensing datasets encompass

multimodal information derived from optical sources, such as

Lidar [31] and synthetic aperture radar (SAR) sensors. How-

ever, applying DCNNs directly to remote sensing (RS) scene

classification introduces the following challenges: The initial

concern arises from intra-class variations due to the diverse

resolutions present in RS images. The second challenge stems

from the complexity of representing information at a granular

level over vast land areas, resulting in the representation of

both similarity and dissimilarity aspects. In order to address

these challenges, we propose a concise yet comprehensive

theoretical framework that guides our approach.

Fine-grained features, when combined with global features,

enhance RS scene classification. For instance, in RS images,

we can identify a ’train station’ by detecting a train or recog-

nize an ’airport’ upon sighting an airplane. Furthermore, RS

imagery inherently encapsulates latent semantic and structural

information, even in the absence of detailed annotations like

bounding boxes or pixel-level annotations. Given these chal-

lenges, we suggest investigating the use of a Multi-granularity

Feature Encoding Ensemble Network (MGFEEN) for the

purpose of improved Remote Sensing Image Classification.

Our approach delves into multiple levels of granularity in order

to enhance accuracy and mitigate the challenges arising from

intra-class variations related to similarity and dissimilarity.

Our primary focus lies in capturing aggregated features that

encompass structural information. At each granularity level,

we introduce an ensemble module that combines distinct

high-level multi-granularity segments featuring comparable

receptive fields yet varying resolutions. In summation, the key

points of our work are as follows:

• To facilitate the automated extraction of advanced fea-

tures, a Multi-granularity Feature Encoding framework

has been devised. Nevertheless, a more comprehensive

and abstract depiction of the image can be acquired by

assimilating these attributes.

• ”Multi-granularity Feature Encoding Ensemble module”

is introduced to efficiently decompose the optimization

process of DCNNs in remote sensing scene categoriza-

tion.

II. Learning Multi-Granularity levels in Remote Sensing

Image

Multiple levels of granularity analysis exist, ranging from

broader to more detailed and vice versa. The primary goal

of comprehending objects at various levels in remote sens-

ing images involves analyzing an image systematically. The

significance of these levels is determined by criteria such as

purpose consistency or the degree of similarity and difference

in sparse features. This importance is established based on the

choice of an objective function. The specifics of segmentation

might vary based on the chosen standards and segmentation

objectives, particularly when defining information units and

their interconnections to create an assessment framework. Nev-

ertheless, the connections identified through diverse standard

criteria could be further subdivided into smaller units, referred

to as information granules[32] is a collection of entities with a

common element, i.e., Entities comprised of elements aggre-

gated due to their resemblance, functional closeness, temporal

similarity, and distinct adjacency are subsequently handled as

a solitary processing unit with semantic significance. This mir-

rors the inherent limitations in the human capacity to manage

and retain information effectively. Scenario1: Let thing object

detection, for example, bounding box b = (bx, by, bw, bh) hold

four coordinates of a granular image patchx. The task of the

bounding box is to regress a candidate bounding box b into

the bounding target g using the regression function f(x,b).
To generate a reversal invariant to scale and location from

the training sample (gi,bi), we minimize the bounding box

L1 loss function Lloc(f(xi, bi), gi) in order to perform the

operation of distance vector∆ = (δw, δy, δx, δh). is defined

by:

δw = log(gw/bw) (1)

δx = (gx − bx)/bw (2)

δh = log(gh/bh) (3)

δy = (gy − by)/bh (4)

Regression tasks usually involve substantially fewer elements

compared to classification tasks. This contributes to improving

the efficiency of the multi-granularity approach. Learning ∆
is generally standardised by its mean and variance δ′x = (δx−
µx)/δx, in a single regression step f is incomplete for accurate

localization. In different iterative of the post-processing step,

we can apply

f ′(x,b) = f ◦ f ◦ f ◦ ......f(x,b) (5)

The intersection over union can be utilized to assess both

negative and positive metrics in evaluating the quality of

detection. If I ◦ U it is greater than a specified threshold u ,

the patch evaluates it as an instance for the class.

y =

{

gyI ◦ U(x, g) > u
0otherwise,

(6)

Where gy indicates the instance label for the actual truth

object gby I ◦ U , defining a detector’s quality. Cascade R-

CNN for small object detection [33], [Author34(year)] makes

it challenging to ask a single segment or regression to perform

perfectly uniformly at all quality levels. The difficult regres-

sion task can be decomposed into more straightforward steps,

forming a cascade regression problem. This formula acts as a

cascade of specialized regresses.

f(x,b) = fτ ◦ fτ ◦ fτ − 1 ◦ ......f1(x,b) (7)
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Where τ is the total number of cascade stages, every regression

in the cascade is optimized bt arriving at the corresponding

scene instead of the initial distribution b1. This cascade

enhances hypotheses progressively. In different regression to

produce a bounding box of high I ◦U , we begin, for instance

(xi,bi), cascade regression up-and-coming re-sample (x′

i,b
′

i)
of great I ◦ U . After varying levels of the regressed, we can

find there is no overfitting. Positive examples are plentiful at

all levels, and the detector of deep stages is optimized for a

higher I ◦ U threshold.

Scenario2: Consider the concept of multi-granularity within

ensemble neural networks, where a finite set of individual

neural networks are employed to comprehend the same query.

By utilizing various learning algorithms, improved predictive

capabilities are achieved. The combined outputs of these dis-

tinct neural networks collectively determine the final outcome.

Assume the input x ∈ Rm joins distribution p(x), if the

output correlating to x is d(x) , the result correlating to the

individual neural network fi(i = 1, 2, 3, ..., N) is fi , here

the weight correlating to fi(x) , is ωi , the production of

Neural Networks ensemble fensemble(x) correlating to x can

be defined as follow:

fensemble(x) =

N
∑

i=1

ωifi(x) (8)

Generalization error of NNE:

Eensemble =

∫

P (x)(

∫

ensemble(x)−D(x))2dx (9)

Generalization error of fi(i = 1, 2, 3, ..., N):Ei =
∫

P (x)(fi(x)− d(x))
2
dx,weighted average of:

fi(i = 1, 2, 3, .., N) = Eaverage =

N
∑

i=1

ωiEi (10)

Diversity of:

fi(i = 1, 2, 3, .., N) = Ai =

∫

P (x)fi(x)− fensemble(x))
2dx

(11)

Diversity of NNE:

Aensemble =

N
∑

i=1

ωiAi (12)

There are some theories analysis defines as the computational

formula:

Eensemble = Eaverage − Eensemble (13)

As we see in Figure 4, Nonetheless, through the imple-

mentation of a branch feature selection technique aimed at

recognizing the initial attribute granularity and optimal feature

subsets across diverse datasets, it becomes feasible to reduce

the computational expenses associated with high-dimensional

data challenges. Figure 12 improves the generalization preci-

sion of NNE by not only considering the diversity between

the networks. It uses r as an output error vector to measure

how well each network generalizes. It can combine both also

can improve the generalization ability of NNE4 right, one of

multi-granularity neural ensemble network.

Scenario3: Let’s consider feature learning for classification

task; we refer to Figure 1, which is feature learning, especially

on multi-granularity auto-encoding algorithms, essential for

encoding and decoding networks. Also, we can consider the

multi-granularity concept in terms of convolutional kernels.

Whereby each type of kernel has specific features of interest,

such as horizontal edge and vertical edge. By designing this

network, we must ensure that the network extracts high-level

features of diversity. As we see Figure 2 indicates, we chose

the convolutional kernel of 1× 1, 3× 3, and 5× 5 to develop

a multi-granularity encoding model.

Figure 4 Illustrates the architecture of the deep multi-

granularity encoding approach, wherein the initial step in-

volves training a multi-granularity encoding model (MGE1).

The outputs of its hidden layer then serve as inputs for the

subsequent multi-granularity encoding (MGE2). In the second

stage, a new MGE2 is developed, and further feature mapping

is performed. Within our overarching framework, the encoder’s

neural network structure defines a sequence of encoders, while

the decoder’s neural network structure establishes a sequence

of decoders. Through gradient descent optimization, the en-

coder and decoder networks are fine-tuned. Consequently, the

entire architecture of the auto-encoders, encompassing both the

encoder and decoder, induces a data bottleneck that ensures

only the central information is reconstructed through the auto-

encoders. This autoencoder setup effectively captures interme-

diate granularity-level visual representations from unlabeled

remote sensing data. The task of learning features at this

intermediate granularity level holds significant importance in

accurately categorizing small-scale sensing images. An auto-

encoder can take an input h and the first map is represented

by h ∈ M for nonlinear mapping.

h = f(Wx+ β) (14)

Where W is a weight matrix to be estimated during training,

β is a bias vector, and f is based on a nonlinear function,

such as hyperbolic tangent function, and sigmoid function.

The multi-granularity encoded feature represents h which is

used to reconstruct the input x by a revised mapping, leading

to the reconstructed information.

γ = f(W ′h+ β′) (15)

Where W ′ is always constrained to be the form W ′ = WT , the

exact weight is utilized for encoding the input and decoding

the latent representation.

A. Remote Sensing Image Scene Classification

Various methods were examined to address land use image

classification challenges in high-resolution overhead images,

employing diverse techniques to analyze bag-of-visual-words

(BoVW) approaches. In a manual feature-based strategy, dis-

tinct feature descriptors, such as the scale-invariant feature

transform, are consistently employed (SIFT)[34], [35], [36]

and Histogram of gradient (HoG). Differing from the con-

ventional manual feature-based method, deep convolutional

neural networks possess enhanced capabilities for feature

representation. Currently,deep convolutional neural networks
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Fig. 1. Multi-Granularity encoding neural networks, described by Auto encoding

(DCNNs) have garnered noteworthy accomplishments in tack-

ling classification difficulties within the realm of remote

sensing[37]. There are [38] that use DCNNs to extract features

of RS images and further explore its generalization latent to

obtain great implementation. Nevertheless, certain methodolo-

gies integrate attention mechanisms into DCNNs, aiming to

incorporate lesser-ranked features guided solely by global-

level annotations [39], [40]. The second way of information is

effectively used in RS scene classification duties [41], which

is excellent. Feature encoders [42], in general, CNN’s, the

FOV determines segmentation accuracy. A constrained field of

view (FOV) could lead to inaccurate identifications of objects,

either generating false positives or missing out on objects

(false negatives) due to insufficient contextual information. To

enhance the FOV of Convolutional Neural Networks (CNNs),

pooling and down-sampling layers are employed, but this leads

to reduced output resolution and detail precision. Enhancing

segmentation accuracy and refining proposed boundaries nat-

urally involves broadening the field of view (FOV) without

compromising resolution, while also enabling the handling of

partial objects.

B. Multi-granularity Feature Extraction Methods

The fundamental goal of pattern recognition involves ac-

curately assigning an input pattern to one of several output

classes. Following the preprocessing phase, the object of char-

acter recognition extracts features. In the process of reducing

dimensionality, the initial data rows are organized into more

manageable clusters, and feature extraction is carried out.

Drawing inspiration from the aforementioned techniques, we

utilize multi-granularity feature extraction for handling remote

sensing images. In scenarios where there’s significant simi-

larity between classes, the performance of DCNNs can drop

significantly. To address this concern, a range of fine-grained

feature extraction approaches are presented, tailored for mul-

titasking and multi-attention object recognition. However, in

many instances, only global annotations are available, making

the identification of fine-grained attributes challenging due

to the absence of semantic-level annotations. Consequently,

multi-granularity feature extraction methods are introduced to

enhance the region-based feature representation capability of

DCNNs.

Fig. 2. Classification architecture for multi-kernel deep learning.

Fig.2 links the classifier to extract the final classifica-

tion task. Softmax classifiers are always used for multi-

classification functions of neural networks, where they can

achieve a tremendous competitive performance eq.16, which

K indicates the data has K classes. In the coding phase, the

original input vector x ∈ ℜc via randomly adding Gaussian

noisy obtain corrupt new input vector x, the enter the non-

linear activation function through linear mapping. Assuming

a training set

X = {(x1, y1), (x2, y2), ..., (xM , yM )},

, the overall cost function of MGE on data set X can be defined

as eq. 17.

(x) =
1

∑k

j=1
e
∑

m

i=0
wixi

j











e
∑

m

i=0
wixi

1

e
∑

m

i=0
wixi

2

........

e
∑

m

i=0
wixi

k











(16)

The objective of Figure 16 is to achieve multiple representation

mapping. For training these deep networks, it’s necessary to

employ a cost function that minimizes the reconstruction error

and ensures the output images closely resemble the input

images. By utilizing two distinct cost functions, remarkable

achievements can be attained.

J(W, b) =
1

2M

M
∑

i=1

||xi − zi||2 +
λ

2
||W ||2

2
(17)
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J(W, b) = −
1

M

M
∑

i=1

(18)

The training process for the stacked depth MGE consists

of two distinct phases: pre-training and fine-tuning. During

the pre-training phase, multiple MGENNs are stacked and

trained using unsupervised learning, while the fine-tuning

phase involves supervised learning for training the soft-max

classifier.

Fig. 3. Deep Multi-Granularity encoding neural network limited the nonlinear
mapping capability of a multi-granularity network with only two hidden
layers.

C. Feature Fusion Approach in Scene Classification

Many research studies employ feature fusion techniques to

counteract the adverse impact of varying image resolutions

and attain enhanced performance. Also, [54] offers a multi-

scale convolutional neural network (CNN) structure consisting

of a fixed-scale net and a varied-scale net to address the

scale variation of objects in remote sensing data.[55] cre-

ate an architecture with two branches that can incorporate

both global-context and local-object characteristics.[56], [57]

presents a method for fusing multi-layer features from pre-

trained CNN models in order to classify RS scenes. This

study focuses on a strategy for fusing features with varying

granularity, localization, and region scales. By creating multi-

subnets with alternative topologies, ensemble learning-based

approaches provide an alternative method for extracting multi-

granularity features. In [58] separate classification results

are generated by multiple CNNs and are combined using

occupation probability. Describes a new method of learning

that uses deep sub-CNNs to learn targeted features.[59] uses

a covariance pooling of CNN features to create an ensemble

for high-resolution RS scene classification that is both effective

and computationally inexpensive. We can assume the ensemble

learning method in architecture to integrate multi-granularity

and multilevel features from the above ensemble learning-

based methods. In Figure 5.4, the left diagram illustrates

the Multi-branch approach for constructing individual neural

networks, while the right diagram depicts the Multi-branch

technique for creating an ensemble of multi-granularity neural

networks.

III. Multi-granularity Feature Encoding Network

Method

Enhancing the precision of deep neural networks has

been successfully demonstrated in various research studies,

as discussed in the literature on multi-granularity feature

learning. Building upon prior research, the approach involves

amalgamating multiple CNN modules. The proposed method,

known as Multi-granularity Feature Encoding Ensemble Net-

work (MGFEEN), aims to enhance accuracy by leveraging

multi-granularity features extracted by diverse networks. The

methodology constructs distinct network levels, each con-

tributing to the overall structure, as detailed earlier in Fig-

ure 5indicates that each set of networks in a given multilevel is

connected to another level. The objective behind this concept is

to disintegrate the parameter optimization process of networks

into multiple granularities and levels, dividing it into steps.

In this approach, each block within every network is trained

and optimized separately, resulting in an enhanced accuracy

performance.

Furthermore, in the dual-down design, the information from

the second granularity level is extracted through the fully

connected layer transfer. The second design on the right side

showcases the enhanced two-level structure of MGFEEN, in-

corporating a transfer fully connected layer. For instance, M11

employs Inception-V3, while M12 is linked to ResNet-50.

Additionally, M21 serves as an easily accessible convolutional

neural network (CNN). The dataset used, known as the EACC-

Dataset, is a distinctive Land Use Data Set comprising 2110

images sourced from Google Earth satellites. These images

are divided into nine distinct object categories, each with

RGB pixels measuring 256×256. The dataset encompasses

150 to 300 images per class, including agricultural, beach,

buildings, commercial, desert, flood, forest, mountain, and

river, as depicted in Figure 5.6, where images (1) through (9)

exemplify the nine classes. As illustrated in Figure 5, there are

i levels in which each set of networks in a certain multilevel

connects to the next or preceding level. The objective of this

strategy is to divide the optimization of network parameters

into distinct phases involving various levels of granularity. In

each phase, individual blocks within the networks are trained

and optimized independently, thereby enhancing the overall

accuracy performance. We proceed with the feature from

multilevel i− 1 to level i,there are two methods introduced:

• MGFE method: merging the output layer’s values at

granularity level i − 1, which correspond to the class’s

probability value, and driving them to the granularity

level i as can be seen in Figure 5 architecture;

• MGFEEN techniques generate an additional fully con-

nected layer with neurons and convey features from the

added fully connected layer to the granularity level, As

demonstrated in Figure 5 structure.
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Fig. 4. Ensemble Neural Network (ENN).

Fig. 5. MGFEEN method with an enhanced two-level structure with an additional fully connected layer. Inception-v3 as M11, Resnet-50 as M12 connected
to the simple convolutional neural network as M21.

A. Activation Function

In the realm of multi-granularity and multilevel networks,

the selection of diverse networks introduces variations and

permits the utilization of distinct activation functions for

extracting a range of features. To further enrich the arsenal

of practical and effective activation functions beyond the

commonly used rectified linear unit (ReLU), we introduce

a modified activation function. Drawing inspiration from the

architecture of neural networks, which draws parallels with the

human nervous system, where signals are conveyed through

minute electrochemical stimuli, our approach seeks to develop

an activation function with a narrow range. This is intended

to address the challenge of vanishing gradient descent and its

associated issues. The following Equation12 evolved.

f(x) =











1, x ≥ b
0, x ≤ a
(

x−a
b−a

)n

, a < x < b











(19)

Here a, b and n are configurable parameters. This function’s

derivative is defined mathematically as following:

f(x) =











0, x ≤ a
0, x ≥ b

n
(

x−a
b−a

)n

, a < x < b











(20)

In utilizing a convolutional neural network (CNN) for feature

extraction, the suggested activation function, for configuring

various parameters, can distribute in extracting a variety of

features. We put the process in a separate experiment such as

InceptionV3, DenseNet, and ResNet after modifying the ReLU

activation layer to the suggested procedure. To gained results

shows some modifications in the proposed function, see the

following Equation14

f(x) =











0, cx ≤ a

b
(

x−a
b−a

)n

, a < cx < b

cx, cx ≥ b











(21)
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There is a derivative in Equation22.

f(x) =











0, cx ≤ a

bn
(

cx−a
b−a

)n−1

, a < cx < b

c, cx ≥ b











(22)

The function expression in equation 22 quietness could not

accomplish the initial goal of smaller activation function

values similar to the human nervous system. Consequently,

future researchers will conduct on this point.

B. Datasets

This study mainly evaluates our proposed approach to

EACC scene classification dataset. The EACC Data set is

a one-of-a-kind Land Use Data Set comprised of 2112 im-

ages obtained from the Google Earth satellite and classified

into nine item classes utilizing 256*256 pixels in the RGB

color space. The authors collected data from Easter Africa

Community members in six countries (South Sudan, Rwanda,

Uganda, Kenya, Burundi, and Tanzania). The images were

obtained in Eastern Africa Community Participating Countries

using the Google Earth Engine.Inc (EACC). Each of the

following groups has between 150 and 300 images: forest,

river, beach, buildings, commercial, desert, flood, mountain,

and agricultural. Some samples from the dataset are depicted

In Figure 6.

Fig. 6. Sample of the novel dataset collected from Easter Africa Community
Countries (EACC)

C. Implementation and Results

All simulations were performed using the python 3.7, Keras,

TensorFlow-GPU1.14.0 framework, and tested on a perfor-

mance computer (Intel ® Core™ i5 CPU, 8GB RAM). We

utilize ReNet50[67] and Inception-v3[68] as baseline models

to perform significantly with the previous methods. We used

these baseline models to construct MGFEEM with ten features

of the output layer without the softmax activation function.

Then, for each input image, ten features from each model

TABLE I
TEST ACCURACY OF DIFFERENT GRANULARITY LEVELS BASED ON

CONVOLUTION AUTO-ENCODE (CONVAE) 20% TESTING FOR EACH

DATASET. DIFFERENCES IN CLASSIFICATION ACCURACY WERE ANALYZED

BETWEEN THE GRANULARITY MODULE WHERE LISTED IN FIGURE 2.

Method UCM Dataset SIRWHU Dataset EACC Dataset
ConvAE( 1X1) 95.81 94.16 95.90
ConvAE (3X3) 98.10 97.19 98.35
ConvAE(5X5) 98.30 98.06 98.90

TABLE II
SUMMARY OF DIFFERENT RESULTS OF THE ACTIVATION FUNCTION

(RELU) AND THE ESTABLISHED ACTIVATION FUNCTION BY UTILIZING

OTHER PARAMETERS IN THE EACC DATASET.

Parameters

a b c n Act. fnx. Variance Average
Acc.(%)

- - - - ReLU 1.46 95.68

-10 0.01 1 3 F1 1.69 95.50

-10 0.1 1 3 F2 1.89 94.30
-3 0.1 1 3 F3 2.17 93.98
-2 0.1 1 2 F4 2.65 94.83
-2 0.1 1 0.5 F5 3.13 93.16
-10 0.1 1 1/3 F6 4.18 93.32

are merged to generate a twenty-feature vector. This vector is

then used as an input to an efficient module composed of five

convolutional layers and one fully connected layer trained for

30 epochs. Combining these two modules with 98.06% and

98.02% accuracies in 98.50 % implements 0.01% over the

most significant accuracy in the first granularity level.

The second network transfers the fully connected layer from

the first granularity level for inception-v3 and the ResNet50.

Within the same training details of baseline, the second

granularity level is an easily CNN with 5CONV and 1FC

layer trained using stochastic gradient descent (SGD) with ten

epochs and an small learning rate of 0.01, see Figure 5 demon-

strates the used structures. The proposed design indicated a

performance accuracy improved from 98.06% using Inception-

v3 and 98.02% of ResNet50 to 98.7%, which is meaningful.

For instance Figure 7 depicts to compare the confusion matrix

with different improvements between UCM-dataset and SIRI-

WHU dataset, and table IV summarizes all the results.

In Table II the proposed activation can look like generalized

ReLu as mentioned b=0 converted the function to the ReLU

within six convolutional layers flowed with Bach normaliza-

tion, max-pooling. In MGFEEN, during training, a percentage

Fig. 7. Sample of a confusion matrix for the UCM dataset based on
inceptionResNetV3. The right one is a Sample of the confusion matrix of
the multi-granularity architecture of deep learning method1 using SIRI-WHU
dataset.
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Fig. 8. Sample of a confusion matrix for EACC dataset using first granularity
level. The second right is the confusion matrix of the multilevel structure of
the multi-granularity feature encoding ensemble network (MGFEEN) using
the EACC dataset.

TABLE III
SUMMARY OF RESULTS OF THREE APPROACHES AS WE INTERPRETED IN

FIGURE 5

Model Granularity

level1

Granularity

level2

Overall

accuracy

InceptionResNetV2+DenseNet 89.75
VGG16+DenseNet 96.91
Inception-v3 98.06
ResNet-50 98.02
MGEENN Inception-

v3+ResNet-50
Five layers CNN 98.50

MGEENN
approach2

Inception-
V3+ResNet-50

Five layers CNN
Additional FC

98.70

Fig. 9. Classification accuracy, for training efficiency of baseline, approach
1, and approach 2.

of features and neurons for testing is used. As well knows the

issues of data training in remote sensing, the supervised deep

learning model requires a massive amount of training samples.

While in the RS classification, labeling the observed data to

prepare training samples for each remote sensing classification

is high time and cost-intensive.

MGFEEN’s approach incorporated data augmentation tech-

TABLE IV
RESULT OF THE DATASETS EXPERIMENTED WITH MGFEEN

Dataset Granularity

level1 Acc.(%)

Granularity

level2 Acc.(%)

Performance

UCM 97.16/ 97.40 98.04 0.64
SIRWHU 95.30/ 95.40 97.8 2.4
EACC (9
Classes)

98.02 / 98.06 98.70 0.58 and 0.54

niques that we are developing to expand the quantity and

performance of the training images, such as transfer learning

and active learning. We focus on developing a high-precision

deep learning model with a minimal sample size. Figure 4

illustrates the MGFEEN technique based on the Inception-

v3 and ResNet-50 baseline models, approach one by utilizing

the output layer’s nine features without using soft-max. For

each input image, the nine features from each network were

combined into an 18-feature vector and fed into a basic

network with five convolutional layers and one fully connected

layer trained for 10 epochs. Once the MGFEEN results are

combined with those from Inception-v3 and Resnet-50, we see

that just one class has improved over the two previous models.

The first level is composed of the inception-v3 and Resnet-

50, as well as an additional completely connected layer. The

second level is a simple CNN with five convolutional layers

and one fully connected layer that was trained using SGD for

10 epochs at a learning rate of 0.01. We solve this constraint

with the MGFEEN technique by retaining a greater number

of features from level one and thereby retaining a greater

number of elements from level one and providing exceptional

performance. Additional progress can be achieved in the future

by introducing an advanced customizable activation function.

The latter can be investigated using MGFEEN by training each

distinct network with a unique activation function. These may

result in the extraction of a variety of features.

IV. Conclusion

In this paper, we present deep convolutional neural network

(DCNN) assembling methods, and we propose the Multi-

Granularity Feature Encoding Ensemble Network (MGFEEN).

MGFEEN is based on establishing different networks at

granularity levels, whereby each network is trained and opti-

mized independently. This strategy optimizes the networks at

granularity levels in order to optimize a larger network. Our

proposed ensemble strategy aims to improve the performance

accuracy of the outcomes as close as possible to the rectified

linear unit (ReLU) activation function. MGFEEN was evalu-

ated and tested using CNNs at two different granularity levels.

ResNet-50 and Inception-v3 are used at the first granularity

level, whereas a simple CNN is used at the second granularity

level. Two fusion models were examined: the first model takes

the output layers of the modules at granularity level 1 and

maintains them at level 2. The second strategy is to construct

a fully connected (FC) layer at granularity level 2.

The experimentation illustrated that the second method

maintains high features and performs better from granularity

levels 1 to 2. The experiments performed on the EACC dataset

demonstrated that the accuracy increased from 98.06% and

98.2% using ResNet-50 and Inception-v3 to approximately

98.50%. The EACC dataset contains nine classes, and the

improvement from granularity level one to granularity level

two was 0.58% and 0.54%. This work will help remote sensing

scientists improve larger remote sensing datasets, and further

work will establish different advanced optimization techniques

and activation functions. Additionally, we will experiment

with MGFEEN by using different activation functions in the
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independent modules of MGFEEN, which can help to extract

additional features for large-scale remote sensing classification

tasks.
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